

Definition of terms for Thermoelectric cooler modules

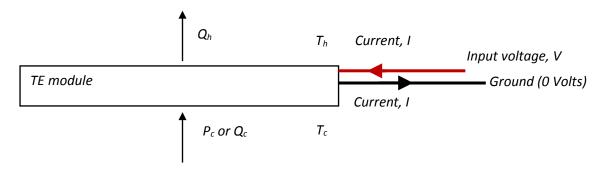


Figure 1: TEC diagram

A diagram of a thermoelectric cooler (TEC) is shown in Figure 1. The following terms are used:

 T_h : module (not system) hot side temperature

 T_c : module (not system) cold side temperature

 $\Delta T = T_h - T_c$: temperature difference across the module

 P_c or Q_c : Heat flow pumped into the module at the cold side, also described as heat removed in some datasheets.

 Q_h : Heat flow pumped out of the module at the hot side, also described as waste heat on some datasheets.

V: Voltage applied to the module

I: Current applied to the module

COP: Coefficient of performance. This is defined for cooling applications as the cooling power divided by the electrical power, P_c/IV .

Using these terms, several special cases of these terms can be defined. These are also illustrated graphically in Figure 2 for an example module.

 ΔT_{max} : The maximum temperature difference that the module can generate across itself. This occurs with zero heat flow into the cold side ($P_c = 0$) and at a current $I = I_{max}$.

 I_{max} : The current at which the maximum temperature difference occurs.

 $P_{c max}$: The maximum heat flow that the module can pump into the cold side (maximum value of P_c or Q_c) at a current of I_{max} , which occurs at zero temperature difference across the module ($\Delta T = 0$).

 $\label{prop:eq:adaptive} \mbox{Adaptive is a registered trademark of European Thermodynamics Limited}.$

Web: <u>www.etdyn.com</u> Tel: +44(0)116 279 6899 E-mail: info@etdyn.com

Heat flow

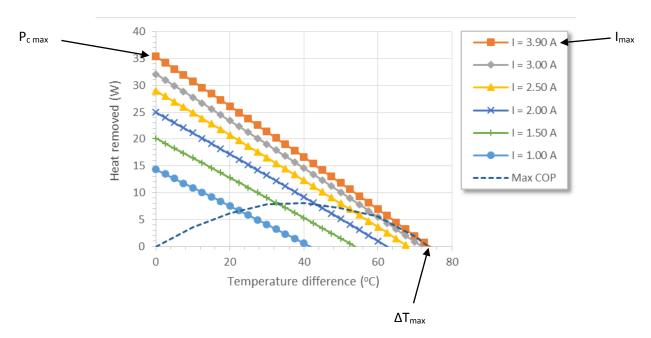


Figure 2: Heat removed (Pc) vs Temperature difference for an example module.

Web: <u>www.etdyn.com</u> Tel: +44(0)116 279 6899 E-mail: info@etdyn.com